
Metatype project: creating TrueType fonts based on M

Serge Vakulenko
Cronyx Engineering, Moscow Russia
vak@cronyx.ru

http://www.vak.ru/proj/metatype

Abstract

The purpose of Metatype project is the development of freeware TrueType fonts for
generic user community.

M language is chosen for creating character glyphs. Currently, glyph im-
ages are converted to cubic outlines using bitmap tracing algorithm, and then to conic
outlines.

Two font families are currently been under development as a part of Metatype
project:

1. TeX font family, based on Computer Modern fonts by Donald E. Knuth, retaining
their “look and feel”. A rich set of typefaces is available, including Roman, Sans
Serif, Monotype and Math faces with Normal, Bold, Italic, Bold Italic, Narrow and
Wide variations.

2. Maestro font family is designed, as a Times-lookalike. It also uses Computer Mod-
ern sources, with a lot of modifications.

Why TrueType?

The world becomes closer. Now we observe, how the
Internet and globalization of economics cause increase
of intensity of contacts between representatives of dif-
ferent peoples, cultures, races. The world becomes more
and more multilingual. The computer branch for a long
time has realized this fact: the draft variant of standard
Unicode is dated 1989 [1].

On the other hand, in the field of the software there
is a recognition and growth of popularity of the free soft-
ware. Linux goes, and surely it needs fonts. Many, many
fonts, good and different, with Unicode support. And we
have such standard on a format of a font — TrueType.
Later, with addition of support Type 1, it was renamed to
OpenType [2].

It is possible to list the following advantages of for-
mat TrueType:

• Open standard; the specification is available on In-
ternet free-of-charge.

• There is a plenty of (commercial) high quality fonts.

• There exists a free implementation named FreeType [3],
of very high quality.

• Graphic environment XFree86 fully supports True-
Type fonts, including smoothing.

The author incurs boldness to assert, that Unicode
and TrueType are the future. “Young” programming lan-
guages, such as Java and C#, use Unicode as the basic

representation of text strings. Far-seeing operational sys-
tems, such as Windows NT, provide support Unicode at
a kernel level. Word-processors use Unicode for stor-
age of documents (XML, RTF and other formats). The
amount of Internet sites with Unicode encoding grows
every day. Cellular telephones use Unicode for Inter-
net browsing (WAP). The world is slowly moving toward
Unicode. And TrueType seems to be a natural result of
font technology development.

The problem is, that currently available systems for
font development do not support Unicode and/or True-
Type, or are not free. The Metatype project is intended
to fill this gap.

Metafont as a glyph source language

Metafont was chosen as the method for glyph develop-
ment.

• Powerful, advanced language of glyph representa-
tion. And, which is very important, well documented.

• Glyph parametrization provides an opportunity of
creation of families of fonts: normal-bold, normal-
slanted, narrow-wide, serif-sans serif etc.

• Availability of a number of fonts of very high qual-
ity: Computer Modern, AMS etc.

It is important also, that Metafont is implemented
on the majority of modern platforms and is available
free-of-charge.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003 1001



Serge Vakulenko

For MetaType project, it was decided to use an ex-
isting metafont/web2c implementation with no additional
modifications.

What is the problem

So, we have Metafont language, and an implementation
of metafont in Web2C [4] package. What prevents us to
take, say, sources of fonts Computer Modern [5] fonts
and to transform them easily to TrueType format? We
see several problems here.

Problem 1: 16-it encoding. Metafont supports only an
8-bit encoding of symbols. But we need 16-bit Unicode
encoding. The situation is aggravated with that Fonts
Computer Modern, as well as the majority of others,
are focused on usage with system TeX. They have non-
standard encoding, moreover, the encoding is different
for different fonts of the family.

For transition to Unicode, the decision was made to
store every glyph source in a separate file. Glyphs are
grouped in subblocks by 16 symbols, and subblocks are
grouped in blocks. Each block NN contains up to 256
symbols in range NN00-NNFF.

The definitions, which are common to all glyphs
of font, are allocated in a separate file base.mf. For
the certain subsets of symbols there might exist separate
files of definitions, for example cyrbase.mf for cyril-
lic and greekbase.mf for greek characters. Parame-
ters of fonts of various styles are located in separate files
param.mf.

The existing sources of Computer Modern fonts were
manually processed and split into two fonts, which the
author has named TeX [6] (381 symbols) and TeX Math [7]
(104 symbols).

Problem 2: splines. For TrueType, glyphs must be rep-
resented as contours, consisting of splines. The best so-
lution would be to derive splines directly from Metafont.
Or to apply Metapost — the implementation of Meta-
font with PostScript output, here it is possible to ex-
tract required splines from PostScript output. There exist
several utilities which use this method for generation of
PostScript Type 3 fonts, for example mf2pt3 [8].

The first difficulty here is that the contour, gener-
ated by Metapost, must be converted to “canonical form”,
i.e. without self-crossings. It is a separate interesting
and difficult mathematical task. In future, it would be
very promising to solve it. But for now it was decided to
use a more simple method — generation of a contour by
tracing the glyph raster image.

Autotrace [9] utility is used for transforming raster
image of glyph into a contour. Autotrace was extended
by a feature of directly input files in GF format.

The second difficulty consists in transformation of a
splines. Autotrace generates cubic splines (Bézier curves

of third order), and for TrueType are required conic splines
(Bézier curves of second order). This mathematical prob-
lem was solved by a method of cutting a cubic spline
into two “close enough” conic splines. A new feature
was added to Autotrace: convert traced contour to conic
splines and output it in a special UGS format (Unicode
Glyph Source).

Problem 3: hints. For using fonts on low resolution
devices, for example on the screen of a monitor, True-
Type fonts are equipped with so-called hints. Hints are
programs written on a pseudo-code of a special inter-
preter, which for every symbol define some changes of
the shape of a symbol, with the purpose of enhancing
glyph rasterization. Creating good hints is a very hard
task, actually it is a manual work.

Now hints are not used in Metatype project. Proba-
bly, in the future, the support for hints will be added.

Some modern rasterizers, for example FreeType 2 [10],
do not use hints (because of patent problems [11]). In-
stead, they use an “auto-hinting” technology. In this case
real hints are not necessary.

Problem 4: low resolution bitmap glyphs. For display
to the screen of the monitor it is offered to use another
method — raster glyphs. TrueType font can contain for
each symbol, in addition to a contour, also a set of raster
glyphs, for use at very low resolution. Such rasters can
be created by means of Metafont, and added to TrueType
font file. It is offered to create 8 raster fonts in the size
13, 14, 15, 16, 17, 18, 20 and 23 pixels. Thus the most
frequently used point sizes are covered (see table 1).

Metafont generates rasters in GF format. To con-
vert them to UGS format, a special utility gf2ugs was
developed.

Problem 5: building file in TTF format. The file in
TrueType format has very complex structure. Fortunately,
there exists a library Fonttools [12], which makes it pos-
sible to work with TTF files, from Python [13] language.
All complexities of the organization of a font file are hid-
den. To build a font, it is enough to make a dozen of data
files in XML format, and then to call an appropriate li-
brary procedure.

How it all works

The source code of every glyph is stored in a separate file
in a Metafont format. The scheme of glyph compilation
is shown in figure 1. As a result, the file in UGS format
is created, containing a contour, and several rasters for
different pixel sizes.

When UGS files for all symbols are ready, an as-
sembly of fonts TTF and BDF is performed (shown nn
figure 2).

This work is carried out by scripts mk_db.py,mk_ttx.py
and mk_bdf.py (written in Python language). Script

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003



Metatype project: creating TrueType fonts based on M

Font Metatype 96 dpi — 100 dpi — 120 dpi —
height font size X Windows MS Windows, MS Windows,

Small fonts Large fonts
13 pixels 96gf 10 pt 9 pt 8 pt
14 pixels 102gf 10 pt
15 pixels 108gf 11 pt 11 pt 9 pt
16 pixels 114gf 12 pt
17 pixels 120gf 13 pt 12 pt 10 pt
18 pixels 132gf 14 pt 13 pt 11 pt
20 pixels 144gf 15 pt 14 pt 12 pt
23 pixels 168gf 17 pt 17 pt 14 pt

Table 1: Bitmap font height in pixels and covered point sizes

0041.mf
 + base.mf
 + encoding.mf
 + param.mf

metafont

autotrace gf2ugs

0041.ugs

metafont
metafont

metafont

Outline
glyph


base.14800gf
base.96gf
base.102gf
...
base.168gf

Raster
glyphs


Figure 1: Translating MF to UGS

TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003 1003



Serge Vakulenko

mk_ttx.py mk_bdf.py

texr.ttf

make bdf

tex09r.bdf
...

tex24r.bdf

font.db

mk_db.py

*.ugs

make ttf

Figure 2: Translating UGS to TTF and BDF

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003



Metatype project: creating TrueType fonts based on M

mk_db.py collects all UGS glyphs to a single DBM database,
for acceleration of work with the data. Script mk_ttx.py
builds XML font data files and, using Fonttools library,
creates TTF file. Script mk_bdf.py transforms raster
data to BDF format, which could be used in X Windows.

UGS file format

For intermediate storage of the glypht data, a special
format named UGS (Unicode Glyph Source) was devel-
oped. It is an ASCII-encoded text file where each line
contains a single statement. The example of a UGS file
for symbol FULL_STOP is given below:
symbol 0x2e design-size 2048

advance-width 569

contour

path

dot-on 273 216

dot-off 258 213

dot-on 245 209

dot-off 231 203

...

dot-on 273 216

end path

end contour

left-bearing 176

right-bearing 177

ascend 218

descend -1

end symbol

symbol 0x2e design-size 33

advance-width 9

bitmap width 4 height 4

. * * .

* * * *

* * * *

. * * .

end bitmap

left-bearing 2

right-bearing 6

ascend 4

descend 0

end symbol

Installing Metatype

The Metatype distribution can be downloaded from Source-
Forge [14] site. The current version is available by CVS [15].

Before using Metatype, you must install the follow-
ing software:

• Python 2.2.2 [16]
• Fontools 2.0b1 [17], with PyXML 0.8.2 [18], and

Nymeric Python 23.0 [19]
• Netpbm 10.15 [20], with libpng 1.2.5 [21]
• Freetype 2.1.4 [22]
• Web2C 7.3.1, including Metafont 2.7182 and Meta-

post 0.641 (author uses the package teTeX 1.0.7 [23])

• Autotrace 0.31.1 [24], patched

Before installing Autotrace, you must apply the patch
autotrace.pch to it:

1. Unpack Autotrace 0.31.1

2. Enter directory autotrace-0.31.1

3. Apply patch:

patch -p1 < autotrace.pch

4. Execute automake

5. Run script ./configure

6. Execute make and make install.

The top directory of Metatype package contains sev-
eral utilities, scripts and makefiles, necessary for pro-
cessing fonts. The source codes of fonts are contained
in subdirectories, one directory per font family. For ex-
ample, the family of fonts named “TeX” is placed in sub-
directory cm/.

To prepare all utilities of package Metatype, exe-
cute

make

in the top directory of Metatype project.
Font source codes are organized in three levels. All

Unicode space is divided into blocks per 256 symbols,
each block is placed in the separate directory. Blocks are
further divided into 16 subblocks with 16 characters per
each one. An example of file structure of a single font
family is shown in figure 3.

Compilation of a font is performed in the directory
compile. Each font style is compiled in a separate sub-
directory with the appropriate name: compile/roman,
compile/roman-italic etc. During compilation, sub-
directories for all blocks and subblocks automatically
will be created.

To start compilation of all glyphs for all styles, enter
directory compile and execute:

make

To build TrueType fonts, execute:

make ttf

To build fonts in BDF format (sizes 9, 10, 11, 12,
13, 14, 18 and 24 points at 100 dpi), run:

make bdf

The result

Here is the example of using fonts TeX Roman and Mae-
stro Roman, created by Metatype package. These figures
were made using Adobe Illustrator and imported into the
article as EPS graphics.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003 1005



Serge Vakulenko

cm/ — TeX font family, based on Computer Modern
00/ — Unicode block 0x0000-0x00ff

002/ — Unicode block 0x0020-0x002f
0020.mf — Glyph 0x0020 – SPACE
0021.mf — Glyph 0x0021 – EXCLAMATION_MARK
. . .
002f.mf — Glyph 0x002f – SOLIDUS

003/ — Unicode block 0x0030-0x003f
. . .
00f/ — Unicode block 0x00f0-0x00ff
encoding.mf — List of charcodes for block 0x0000-0x00ff

02/ — Unicode block 0x0200-0x02ff
03/ — Unicode block 0x0300-0x03ff
. . .
compile/ — Compilation directory

roman/ — Roman style font
Makefile — Build script
param.mf — Parameters for Roman style font

roman-bold/ — Roman Bold style font
. . .
sans-italic/ — Sans Italic style font
Makefile — Build script
base.mf — Defines for all glyphs
cyrbase.mf — Defines for cyrillic glyphs
greekbase.mf — Defines for greek glyphs

Figure 3: Structure of Metatype font source directory

1006 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003



Metatype project: creating TrueType fonts based on M

TeX:

Maestro Roman:

(A.S.Pushkin. “Eugeny Onegin”. English transla-
tion Dennis Litoshick.)

Unsolved problems

At the present moment, the Fonttools library does not
support an adding raster data to TrueType fonts. Ex-
tending this library is required, with a support for tables
EBDT, EBLC and EBSC.

The problem of kerning is not solved. In the fu-
ture it is supposed to use one of algorithms of automatic
kerning.

The character set of “TeX” and “Maestro” font fam-
ilies is incomplete. To cover a minimum needs, adding
symbol sets Latin-1, Latin Extended-A and Latin Extended-
B is highly desirable.

The contours created by tracing rasters are not op-
timal. It is desirable to build an optimizer, which will
reduce the amount of spline segments without distortion
of the glyph appearance.

Acknowledgments

The author wishes to thank Cronyx Engineering Com-
pany for providing the necessary resources for this project.

References

[1] http://www.unicode.org/history/

[2] http://www.microsoft.com/typography/
specs/

[3] http://www.freetype.org/

[4] http://www.tug.org/web2c/

[5] ftp://cam.ctan.org/tex-archive/fonts/
cm/mf/

[6] http://www.vak.ru/proj/metatype/cm/
roman/

[7] http://www.vak.ru/proj/metatype/
cm-math/roman/

[8] http://obelix.ee.duth.gr/˜apostolo/
mf2pt3.html

[9] http://autotrace.sourceforge.net/

[10] http://www.freetype.org/freetype2/
index.html

[11] http://www.freetype.org/patents.html

[12] http://sourceforge.net/projects/
fonttools/

[13] http://www.python.org/

[14] http://sourceforge.net/project/
showfiles.php?group_id=41605

[15] cvs -d:pserver:anonymous@cvs.
sourceforge.net:/cvsroot/metatype

checkout metatype

[16] http://python.org/2.2.2/

[17] http://prdownloads.sourceforge.net/
fonttools/fonttools-2.0b1.tgz

[18] http://prdownloads.sourceforge.net/
pyxml/PyXML-0.8.2.tar.gz

[19] http://prdownloads.sourceforge.net/
numpy/Numeric-23.0.tar.gz

[20] http://prdownloads.sourceforge.net/
netpbm/netpbm-10.15.tgz

[21] http://prdownloads.sourceforge.net/
libpng/libpng-1.2.5.tar.gz

[22] http://prdownloads.sourceforge.net/
freetype/freetype-2.1.4.tar.gz

[23] http://www.tug.org/teTeX/

[24] http://prdownloads.sourceforge.net/
autotrace/autotrace-0.31.1.tar.gz

TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003 1007


